Neurociencia computacional

Gianluca Susi Linea de investigación coordinada por Gianluca Susi.

La neurociencia computacional es un campo interdisciplinar que emplea modelos matemáticos y análisis teóricos para entender los principios que gobiernan la fisiología, la estructura y el desarrollo del sistema nervioso central, y las habilidades cognitivas relacionadas.
En concreto, en el laboratorio realizamos simulaciones de redes cerebrales basadas en datos reales, con los siguientes objetivos:

1) entender los mecanismos subyacentes a la progresión de enfermedades neurodegenerativas, mediante el estudio y la reproduccion de patrones de conectividad funcional que caracterizan a personas sanas y con patologia;

2) diseñar y testear programas personalizados de estimulación eléctrica no invasiva (p.ej. tACS), para la modulación de la actividad oscilatoria cerebral y de la de/sincronización entre áreas corticales especificas.

Synthesis of a computational brain model and extraction of functional connectivity patterns

Synthesis of a computational brain model and extraction of functional connectivity patterns

Scheme of tACS stimulation

Scheme of tACS stimulation and simulated electric field

Una ulterior actividad en este área es la aplicación de estrategias de procesamiento inspiradas al cerebro (neuromorphic computing) para abordar problemas de ingeniería (p.ej. clasificación).

Synthesis of neuromorphic microcircuits for brain-inspired processing.

Synthesis of neuromorphic microcircuits for brain-inspired processing.

En el laboratorio hemos desarrollado FNS, un simulador de acceso libre para la reproducción de dinámicas cerebrales basado en redes neuronales de tipo spiking: https://www.fnsneuralsimulator.org/
FNS

Los miembros del Laboratorio de Neurociencia Cognitiva y Computacional pertenecientes a esta linea de investigación están actualmente participando en el proyecto Europeo Virtual Brain Cloud (GA ID: 826421).

Publicaciones recientes:

G. Susi, P. Garcés, E.Paracone, A.Cristini, M.Salerno, F.Maestú, E.Pereda. FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency. Sci Rep. 2021 Jun; 11(1):12160.

A. Giovannetti*, G. Susi*, P. Casti, A. Mencattini, S.Pusil, M.E. López, C. Di Natale, E. Martinelli. Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography. Neural Comput & Applic, 2021.

G. Susi, L. Antón, F. Maestú, C. Mirasso. nMNSD—A Spiking Neuron-Based Classifier That Combines Weight-Adjustment and Delay-Shift. Front Neurosci (15) 2021.

G. Capizzi, G.Lo Sciuto, C.Napoli, M.Wozniak, G.Susi. A spiking neural network-based long-term prediction system for biogas production. Neural Networks (129) 2020.

P. Casti, A. Giovannetti, G. Susi, A. Mencattini, S. Pusil, M.E. López,, C. Di Natale, and E. Martinelli. A deep CNN-based approach for predicting MCI to AD conversion. In 2020 Alzheimer’s Association International Conference (ALZ2020), 2020. – Alzheimer’s and Dementia, 2020, 16.

D. Lopez-Sanz, J. de Frutos Lucas, G.Susi and F. Maestu. Magnetoencephalography in Alzheimer’s disease: correlation with current biomarkers. In OXFORD RESEARCH ENCYCLOPEDIA: 50 years of MEG. Oxford University press, 2020.

G. Susi, I. Suárez Méndez, D. López Sanz, M. E. López García, E. Paracone, E. Pereda, F. Maestu. Hippocampal volume and functional connectivity transitions during the early stage of Alzheimer’s disease: a Spiking Neural Network-based study. 28th Annual Computational Neuroscience Meeting: CNS*2019. – BMC Neuroscience 2019, 20 (Suppl 1).

G. Susi, J. de Frutos Lucas, G. Niso, S.M. Ye Chen, L. Ant´on Toro, B.N. Chino Vilca, and F. Maestu. Healthy and pathological neurocognitive aging: Spectral and functional connectivity analyses using magnetoencephalography. In OXFORD RESEARCH ENCYCLOPEDIA OF PSYCHOLOGY AND AGING. Oxford University press, 2019.

G. Susi , L. Antón Toro ,L.Canuet, M.E.López, F.Maestú, C.R.Mirasso , E.Pereda. A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP. Front Neurosci. 2018; 12:780.

G. Susi, S. Acciarito, T. Pascual, A. Cristini, and F. Maestu. Towards neuro-inspired electronic oscillators based on the dynamical relaying mechanism. International Journal on Advanced Science, Engineering and Information Technology, 9(2), 2019.

G. Susi, F. Bartolacci, and Massarelli M. A computational approach for the understanding of stochastic resonance phenomena in the human auditory system. International Journal on Advanced Science, Engineering and Information Technology, 9(4), 2019.

S. Acciarito, G.C. Cardarilli, A. Cristini, L. Di Nunzio, R. Fazzolari, G.M.Khanal, M. Re, and G. Susi. Hardware design of LIF with latency neuron model with memristive STDP synapses. Integration, the VLSI Journal, 59:81-89, 2017.

Publicaciones principales

2021

  • Santos-Mayo A, Moratti S, de Echegaray J, Susi G. A Model of the Early Visual System Based on Parallel Spike-Sequence Detection, Showing Orientation Selectivity. Biology (Basel). 2021 Aug; 10(8):. PubMed ID: 34440033.
  • Susi G, Garcés P, Paracone E, Cristini A, Salerno M, Maestú F, Pereda E. FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency. Sci Rep. 2021 Jun; 11(1):12160. PubMed ID: 34108523.
  • Susi G, Antón-Toro LF, Maestú F, Pereda E, Mirasso C. -A Spiking Neuron-Based Classifier That Combines Weight-Adjustment and Delay-Shift. Front Neurosci. 2021; 15:582608. PubMed ID: 33679293.

2020

  • Capizzi G, Lo Sciuto G, Napoli C, Woźniak M, Susi G. A spiking neural network-based long-term prediction system for biogas production. Neural Netw. 2020 Sep; 129:271-279. PubMed ID: 32569855.

2018

  • Susi G, Antón Toro L, Canuet L, López ME, Maestú F, Mirasso CR, Pereda E. A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP. Front Neurosci. 2018; 12:780. PubMed ID: 30429767. PDF file PDF file.