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� Early EEG recordings under 48 h after cardiac arrest allow for prediction of outcome of coma patients.
� EEG-based functional connectivity features hold potential to improve outcome prediction of comatose

patients after cardiac arrest.
� The most accurate prediction model combined functional connectivity and non-coupling EEG metrics,

showing the best results to date.

a b s t r a c t

Objective: To investigate the additional value of EEG functional connectivity features, in addition to non-
coupling EEG features, for outcome prediction of comatose patients after cardiac arrest.
Methods: Prospective, multicenter cohort study. Coherence, phase locking value, and mutual information
were calculated in 19-channel EEGs at 12 h, 24 h and 48 h after cardiac arrest. Three sets of machine
learning classification models were trained and validated with functional connectivity, EEG non-
coupling features, and a combination of these. Neurological outcome was assessed at six months and cat-
egorized as ‘‘good” (Cerebral Performance Category [CPC] 1–2) or ‘‘poor” (CPC 3–5).
Results: We included 594 patients (46% good outcome). A sensitivity of 51% (95% CI: 34–56%) at 100%
specificity in predicting poor outcome was achieved by the best functional connectivity-based classifier
at 12 h after cardiac arrest, while the best non-coupling-based model reached a sensitivity of 32% (0–54%)
at 100% specificity using data at 12 h and 48 h. Combination of both sets of features achieved a sensitivity
of 73% (50–77%) at 100% specificity.
Conclusion: Functional connectivity measures improve EEG based prediction models for poor outcome of
postanoxic coma.
Significance: Functional connectivity features derived from early EEG hold potential to improve outcome
prediction of coma after cardiac arrest.

� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Early prediction of neurological outcome in postanoxic coma
patients remains a challenge. With bilateral absence of somatosen-
sory evoked potentials or bilateral absence of pupillary light and
corneal reflexes, 10–20% of patients with poor outcome can be
detected reliably (Sandroni et al. 2014; Rossetti et al. 2016). EEG
approaches have shown to be of relevant additional value, reaching
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50–66% sensitivity for reliable prediction of poor or good outcome
(Tjepkema-Cloostermans et al. 2015, 2019; Rossetti et al. 2016;
Ruijter et al. 2019). Generalized suppression (<10 mV) and syn-
chronous patterns with � 50% suppression at 12–24 h after cardiac
arrest are invariably associated with a poor outcome. Otherwise,
evolution towards a continuous EEG pattern within 12 h after car-
diac arrest is strongly associated with a good outcome (Sivaraju
et al. 2015; Spalletti et al. 2016; Ruijter et al. 2019). However, prog-
nosis of many patients remains uncertain, which leads to a pro-
longed and possibly futile treatment in intensive care units (ICUs).

Most EEG research in this field entails visual interpretation. This
requires extensive training, is time-consuming, and suffers from
inter-rater variability. Computer assisted approaches allow for
objective interpretation and may outperform visual assessment.
Proposed computer assisted methods for prediction of postanoxic
coma poor outcome include features from the frequency, ampli-
tude, and entropy domains with random forest classification
(Tjepkema-Cloostermans et al. 2017; Nagaraj et al. 2018), regres-
sion analysis modeling (Ruijter et al. 2018), and deep learning
(Tjepkema-Cloostermans et al. 2019). Herewith, reliable prediction
of a poor outcome was possible in up to 62–66% of patients.

Functional connectivity, defined as the statistical interdepen-
dence of two EEG time-series based on their phase, amplitude or
spectrum, has been associated with good or poor outcome after
cardiac arrest (Beudel et al. 2014; Zubler et al. 2016, 2017), show-
ing potential for outcome prediction. Functional connectivity anal-
ysis is based on the assumption that synchronization of activity
between distant brain regions underlies physiological neuronal
communication and integration (Fries 2015). Since cardiac arrest
leads to a cascade from synaptic failure towards neuronal cell
death (Hofmeijer and van Putten 2012; Norton et al. 2012), we
expect functional connectivity to be altered in these patients.

In this work, we investigate the value of numerous and comple-
mentary functional connectivity features in postanoxic coma to
predict neurological outcome in a large multicenter cohort of
comatose patients after cardiac arrest. Additionally, we study their
evolution over time, which has, to the best of our knowledge, never
been done before. Finally, we study the additional predictive value
of functional connectivity features to state-of-the-art prognostica-
tion using quantitative non-coupling EEG features. Previous elec-
trophysiology studies focused in postanoxic coma patients or
subjects with consciousness disorders have found that a decreased
connectivity or power in the alpha band and an increase in these
parameters in the delta band is associated with poor outcome
(Nenadovic et al. 2014; Hong and Su 2017; S�erban et al. 2017;
Chatelle et al. 2018). Therefore, we hypothesize that similar
changes in connectivity in these bands will be observed, and that
the parameters obtained from these frequency bands will have a
higher relevance in the prediction of outcome of postanoxic coma
patients.
2. Materials and methods

2.1. Design and patients

We performed a post hoc analysis of a prospective cohort study
on EEG-based outcome prediction of patients suffering from coma
after cardiac arrest. Consecutive comatose (Glasgow Coma Scale
score � 8) patients after cardiac arrest were prospectively included
from June 2010 to December 2017 at the Medisch Spectrum
Twente and Rijnstate hospital, two Dutch teaching hospitals.
Exclusion criteria included severe traumatic brain injury, acute
stroke, previous dependency in daily living (Cerebral Performance
Category [CPC] 3 or 4), and progressive neurodegenerative disease.
This dataset has been partially used in preceding articles focused
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on outcome prediction after cardiac arrest using visual assessment
(Cloostermans et al. 2012; Hofmeijer et al. 2015; Tjepkema-
Cloostermans et al. 2015; Sondag et al. 2017; Glimmerveen et al.
2019; Ruijter et al. 2019) or quantitative analysis (Tjepkema-
Cloostermans et al. 2013, 2017; Ruijter et al. 2018). The Medical
Research Ethics Committee Twente dismissed the need for
informed consent for EEG monitoring during the ICU stay and clin-
ical follow-up, since EEG monitoring is part of the usual routine
care in both hospitals. Data were anonymized before further
processing.

Neurological functional outcome, expressed as the score on the
five-point Glasgow-Pittsburgh cerebral performance category
(CPC) (Jennett and Bond 1975), was used as the primary outcome
measure, and dichotomized as good (CPC 1–2, none/moderate neu-
rological deficits with autonomy in daily life) or poor (CPC 3–5,
severe disability/vegetative state/death). Outcome was registered
by one of three investigators during a standardized telephone
interview with the patient or patient’s legal representative at six
months after hospitalization (BR, MTC, HK). CPC scores were esti-
mated using a Dutch translation of the EuroQol-6D questionnaire
(Hoeymans et al. 2005).

2.2. Treatment and EEG recordings

Postanoxic comatose patients were treated in accordance with
standard protocols at the hospitals. Temperature of 33 or 36 �C
was induced after arrival on the ICU and maintained for 24 h; for
more details, see (Hofmeijer et al. 2015). In short, fentanyl or
remifentanil and propofol were used for sedation and analgesia
at the Medisch Spectrum Twente. At the Rijnstate hospital, patients
were provided a combination of midazolam, propofol and mor-
phine. Continuous EEG recordings were started between 8 AM
and 8 PM after admission to the ICU, and always within 24 h after
cardiac arrest. Twenty-one silver/silver chloride electrodes were
positioned according to the international 10–20 system on the
scalp. EEG recordings were performed with a sampling frequency
of 256 Hz with a Neurocenter EEG (Medisch Spectrum Twente)
or 500 Hz with a Nihon Kohden system (Rijnstate). EEG was
extracted until patients recovered consciousness or until it was
decided to withdraw treatment. However, EEG recordings were
always stopped after 5 days in the ICU.

2.3. Withdrawal of treatment

Withdrawal of life-sustaining treatment was contemplated only
after 72 hours since the return of spontaneous circulation, when
the patient was off sedation and back to normothermia. The final
decision was based on international guidelines, which included
bilateral absence of short latency somatosensory evoked potentials
(SSEPs), incomplete return of brainstem reflexes, and absent or
extensor motor responses (Sandroni et al. 2014; Rossetti et al.
2016). Sporadically, decisions on treatment withdrawal were taken
between 48 and 72 hours when absent SSEP responses were
observed. While EEG data within 72 h were not used for decisions
regarding treatment withdraw, physicians were not blinded to the
EEG, as they had to assess the treatment of electrographic seizures.

2.4. EEG preprocessing

Analysis of the EEG data was performed offline and using
MATLAB (MATLAB Release R2018B The Math-Works, Inc.). Some
of the scripts developed used functions from FieldTrip
(Oostenveld et al. 2011), and GLMNET (Qian et al. 2013). Firstly,
all the data was filtered and downsampled to 256 Hz, if necessary.
Afterwards, an automated custom computer algorithm was used
(Tjepkema-Cloostermans et al. 2013), automatically extracting 5-
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minute artifact-free EEG segments for each hour up to 120 hours
after cardiac arrest. Before any subsequent analysis, the EEG was
re-referenced to a 19-channel longitudinal bipolar montage.

Visual EEG assessment has shown the highest predictive values
between 12 and 48 hours after resuscitation (Hofmeijer and van
Putten 2016). Therefore, 5-minute EEG epochs at 12, 24 and 48
hours were used. In the case that no epoch was available at these
time points, e.g. because of artifacts, the closest artifact-free epoch
in the range of ± 2 h was used. These epochs were band-pass fil-
tered with a FIR window filter (1024th order, built using a Cheby-
shev window) into Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–
12 Hz), Beta1 (12–18 Hz), Beta2 (18–25 Hz), and Gamma (25–
45 Hz) frequency bands. Connectivity features used in this study
were calculated separately for each frequency band.

2.5. Connectivity features extraction

We estimated three complementary connectivity features:
coherence (COH, (Enochson and Otnes 1965)), Phase Locking Value
(PLV, (Lachaux et al. 1999; Aydore et al. 2013)) and mutual infor-
mation (MI, (Cellucci et al. 2005)). COH and PLV are sensitive to
volume conduction, meaning that spurious zero-lag connectivity
could potentially affect them. To prevent influence of volume con-
duction, corrected imaginary COH (ciCOH, (Ewald et al. 2012)) and
corrected imaginary PLV (ciPLV, (Bruña et al. 2018)), insensitive to
the contribution of zero-lag synchronization, were also included.

The 5-minute EEG epochs were subdivided in segments of 10
seconds each. The first and the last segments were discarded to
correct for the border effect of the filtering process. The connectiv-
ity features were calculated in each of the remaining segments,
then averaged over all segments. As COH gives a value per fre-
quency step, the band-wise COH value was calculated as the aver-
age of the value in each frequency step within the band limits.

2.6. Feature matrix construction

The calculation of each connectivity feature yields a matrix of
dimensions 19x19 for each 5-minute epoch and frequency band,
depicting the functional connectivity between any pair of elec-
trodes. The high number of connectivity features calculated
requires a dimensionality reduction, for which the average of the
whole connectivity matrix excluding the diagonal and the average
connectivity per channel were calculated. Three basic graph theory
features from the weighted functional networks were obtained
from the connectivity matrices: Clustering Coefficient (Onnela
et al. 2005), Characteristic Path Length (Antoniou and Tsompa
2008), and Efficiency (Latora and Marchiori 2001).

PLV, ciPLV, and mutual information can be calculated indepen-
dently in each 10-second segment, and thus the mean and the vari-
ance of the graph features and the variance of the average
connectivity were calculated as well, adding seven more features
per frequency band and connectivity feature in those cases. There-
fore, the final feature vector for each subject had dimension n = 816
(Table 1).

Furthermore, given the importance of the evolution of EEG
within 48 hours after return of spontaneous circulation
(Hofmeijer et al. 2015; Ruijter et al. 2018), the creation of groups
containing all possible combinations of sets of features extracted
at 12, 24 and 48 hours was considered pertinent in this study.
Thus, patients were subdivided regarding the availability of record-
ings at these different time stamps.

2.7. Outcome prediction

Machine learning techniques were used to combine all features
in a model to predict outcome. The creation of classifiers followed
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the diagram shown in Fig. 1, which stands as a classical procedure
for the creation of a machine learning classifier. The subjects were
randomly allocated to two groups (Figure 1, D1): the training set,
which is used to train and adjust the parameters of the classifiers
(80% of subjects), and a test set, with which the predictive power
of the trained classification models is evaluated (remaining 20%
of subjects).

The classifiers were created using the individual datasets
extracted at different timestamps as well as all their possible com-
binations (which we will call temporal subsets), resulting in 7 dif-
ferent sets of classifiers (12 h, 24 h, 48 h, 12&24 h, 12&48 h,
24&48 h, 12&24&48 h). The combined datasets only included data
from patients with EEG epochs available in all the included time
points.

From all available features, a selection of features is made using
an elastic net algorithm (Zou and Hastie 2005), implemented in
MATLAB. An equal weight was given to both L1 and L2 penalties
on which this algorithm is based (a = 0.5), being consequently
designed to deal with possible collinearities between features
and remove redundancies among variables while keeping all the
relevant information. The program ran over the same dataset 500
times, and every feature that was selected at least once by the elas-
tic net algorithm was used in the classification model training (Fig-
ure 1, D2).

The model was trained to predict poor outcome with 100%
specificity. For the training we used a 5-fold cross-validation.
Two types of machine learning classifier models were used: bagged
trees (BT), which is a Random Forest classifier with an additional
bootstrapping step added in order to avoid biased results, and lin-
ear support vector machine (LSVM), which defines a linear hyper-
plane separator to assign new events to the different possible
categories. Initially non-probabilistic, the LSVM can be trans-
formed to probabilistic classifiers thanks to the Platt scaling
method (Platt et al., 1999). The whole procedure was repeated over
500 times to obtain the 95% confidence interval (CI) for the classi-
fication task.

2.8. Additional value of functional connectivity

To assess the additional value of functional connectivity fea-
tures to non-coupling EEG features, we created two additional clas-
sifiers sets. The first was trained with 44 non-coupling EEG
features as used in (Nagaraj et al. 2018), which are based in the
amplitude evolution, frequency distribution, and entropy (the
amount of statistical information a random variable presents) of
EEG time-series. The second set of classifiers was trained with both
functional connectivity and non-coupling features.

2.9. Statistics

Between-groups comparisons were assessed with a Mann-
Whitney U test for continuous data, a Fisher’s Exact test for cate-
gorical data, and a binomial test for dichotomous data. p-
values < 0.05 were considered statistically significant. All results
for classification performance are stated as median (95% CI) unless
stated otherwise.

Discriminative values of prediction models of the test and train-
ing sets were assessed as sensitivity at 100% specificity and AUC of
Receiver Operator Characteristic (ROC, including 95% confidence
interval (CI)) analyses. Also, predictive values for prediction of out-
come were calculated using Receiver Operator Characteristic
(ROC) of the training and test sets. For prediction of poor outcome,
predictive values were expressed as sensitivity (95%CI) at a speci-
ficity level of 100% in the training set, and as sensitivity (95%CI)
and specificity (95%CI) in the test set. Since models were trained
for optimal prediction of poor outcome, the predictive features for



Table 1
Functional connectivity features calculated for every 5-minute EEG epoch in this study. COH: coherence; ciCOH: corrected imaginary coherence; PLV: phase locking value; ciPLV:
corrected imaginary phase locking valiue; MI: mutual information. ‘‘Total” means that the feature was calculated from the averaged connectivity matrix, while mean & variance
indicates that the features were calculated from the connectivity matrices at each 10 second segment, before their averaging.

Connectivity measure Feature Total Mean & Variance Number of features Total number of features

COH Total average connectivity
p

X 1 23
Average connectivity per channel

p
X 19

Clustering coefficient
p

X 1
Characteristic Path Length

p
X 1

Efficiency
p

X 1

ciCOH Total average connectivity
p

X 1 23
Average connectivity per channel

p
X 19

Clustering coefficient
p

X 1
Characteristic Path Length

p
X 1

Efficiency
p

X 1

PLV Total average connectivity
p p

2 30
Average connectivity per channel

p
X 19

Clustering coefficient
p p

3
Characteristic Path Length

p p
3

Efficiency
p p

3

ciPLV Total average connectivity
p p

2 30
Average connectivity per channel

p
X 19

Clustering coefficient
p p

3
Characteristic Path Length

p p
3

Efficiency
p p

3

MI Total average connectivity
p p

2 30
Average connectivity per channel

p
X 19

Clustering coefficient
p p

3
Characteristic Path Length

p p
3

Efficiency
p p

3

Number of frequency bands x 6
Final number of features 816

Fig. 1. Flowchart showing the complete process the data undergo in this analysis, as well as the procedure to create the classifiers. This includes acquisition of the data (A),
cleaning and preprocessing of the data (B), the calculation of the connectivity features (C), feature selection with an elastic net algorithm (D), training of the classifiers for a
100% specificity classification (E1), selection of the best classifiers (E2), and performance evaluation of the classifiers at the test set (F).
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good outcome were only reported for the test set. Predictive values
for good outcome were expressed as sensitivity (95%CI) at a speci-
ficity level of 95% in the test set only. Note that the meaning of sen-
sitivity and specificity depend on the classification objective. If the
focus is prediction of poor outcome, sensitivity refers to the percent-
1315
age of poor outcome subjects correctly classified, and specificity to
the percentage of good outcome subjects correctly assessed. If the
focus is prediction of good outcome, the definitions are switched.

With the objective of interpreting our results, and observe the
direction of the changes in connectivity, a post-hoc statistical test
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comparing average connectivity was performed only if any feature
was selected by the feature selection algorithm in all the best clas-
sifiers in at least 80% of the iterations (400 out of 500 iterations).

All statistical analyses were performed using MATLAB.
3. Results

3.1. Demographic information

Data from 594 patients were included, of whom 46% had a good
outcome. Table 2 contains their baseline characteristics, as well as
data about the sedatives used in their treatment. Supplementary
Materials Tables 1 and 2 include the demographics per hospital.

3.2. Performance in the training set

The number subjects included, number of features remaining
after the feature selection process, and sensitivities of the trained
classifiers at different temporal subsets, are shown in Table 3. Most
subsets required 31–46 features to be implemented in the classi-
fier. The classifiers using subsets of patients at 12 h, 12 h&48 h
and 12 h&24 h&48 h achieved the highest predictive values in
the training set (sensitivity 34–73% at 100% specificity) and were
further validated in the test set. Supplementary Materials Tables
Table 2
Summary of baseline characteristics of patients included in this study. Maximum
rates of sedative medication refer to the maximum doses within the first 24 h after
cardiac arrest. OHCA: Out-of-hospital CA; VF: Ventricular fibrillation; VT: Ventricular
tachycardia.

Good outcome
(n = 294)

Poor outcome
(n = 300)

p-
value

Male (%) 227 (77) 224 (74) 0.5
Age (mean ± SD)

OHCA (%)
59 ± 12
270 (92)

65 ± 13
264 (90)

<0.001
0.14

Primary cardiac cause (%) 262 (89) 210 (70) <0.001
Shockable First rhythm (VF/

VT) (%)
273 (93) 174 (58) <0.001

Treated with propofol in First
24hr (%)

253 (86) 253 (84) 0.06

Max propofol rate (mg/kg/h)
Treated with midazolam in
First 24hr (%)

2,9 ± 1,2
89 (30)

2,7 ± 1,1
98 (33)

0.01
0.44

Max midazolam rate (mg/kg/h)
Treated with fentanyl in
First 24hr (%)

118,0 ± 73,0
129 (44)

134,8 ± 95,7
152 (51)

0.2
0.22

Max fentanyl rate (mg/kg/h)
Treated with remifentanil
in first 24hr (%)

1,2 ± 0,7
17 (6)

1,6 ± 0,7
25 (4)

0.009
0.28

Max remifentanil rate (mg/kg/
h)
Treated with morphine in
first 24hr (%)

7,8 ± 4,5
111 (38)

4,7 ± 3,4
97 (32)

0.016
0.14

Max morphine rate (mg/kg/h) 25,9 ± 11,4 28,7 ± 11,2 0.08

Table 3
Number of features included in the functional connectivity classifier training after the featu
of poor outcome. The bold lines indicate the temporal subsets that were selected as best in t
at 100% specificity is depicted in percentage (%) and expressed as median (95% Confidenc

Subset Patients Good outcome Poor outcome

12 h 366 185 181
24 h 537 279 258
48 h 405 197 208
12 h & 24 h 333 177 156
12 h & 48 h 238 126 112
24 h & 48 h 375 187 188
12 h & 24 h & 48 h 232 123 109
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3, 4, and 5 show which specific features were used for the training
of these classifiers.
3.3. Performance in the test set

The functional connectivity-based classifier that achieved the
highest sensitivity and specificity for prediction of poor outcome
in the test set was the LSVM classifier at 12 hours after cardiac
arrest (sensitivity = 51% (34–56) and specificity = 100% (100–
100); Fig. 2 Green). Performance of all classifiers in the test set is
shown in Table 4.

The best performance for prediction of good outcome was
observed in the same classifier (sensitivity = 69% (69–69) and
specificity = 95%; Fig. 3).
3.4. Additional value of functional connectivity

The best performance obtained by the non-coupling EEG fea-
tures classifiers in the test set was achieved by the BT classifier
re selection process and performance of the classifiers in the training set for prediction
he training phase. BT: Bagged Trees; LSVM: Linear Support Vector Machine. Sensitivity
e Interval).

Features for classifier training LSVM BT
Sensitivity100 Sensitivity100

40 40 (31–51) 34 (11–49)
31 26 (18–33) 11 (3–24)
112 12 (7–20) 11 (3–25)
39 24 (16–43) 21 (2–40)
46 73 (56–80) 67 (48–76)
34 15 (10–22) 23 (9–36)
41 46 (32–60) 61 (38–74)

Fig. 2. ROC curve for prediction of poor outcome in the test set trained only with
non-coupling features (blue), only with functional connectivity features (green),
and both groups of features (red). The circular markers of the same colors
correspond to the actual classification performance of the respective classifiers.
ROC: Receiver Operating Curve, LSVM: Linear Support Vector Machine, BT: Bagged
Trees. All classification parameters are expressed as median (95% Confidence
Intervals).



Table 4
Performance of the functional connectivity classifiers in the test set for prediction of poor outcome. BT: Bagged Trees; LSVM: Linear Support Vector Machine. Sensitivity and
specificity are depicted in percentage (%) and are expressed as median (95% Confidence Intervals).

Subset LSVM BT

Sensitivity Specificity Sensitivity Specificity

12 h 51 (34–56) 100 (100–100) 37 (15–51) 100 (100–100)
12 h & 48 h 41 (27–50) 96 (96–96) 32 (18–41) 96 (96–100)
12 h & 24 h & 48 h 29 (24–52) 92 (92–96) 43 (24–62) 92 (92–96)
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at the 12&48 hours temporal subset (sensitivity = 32% (0–55) and
specificity = 100% (100–100); Fig. 2 Blue). The best performance
achieved by the classifiers trained with both non-coupling features
and functional connectivity features was attributed to the LSVM
classifier at the 12 & 48 hours subset (sensitivity = 73% (50–77)
and specificity = 100% (100–100); Fig. 2 Red). Area under the curve
(AUC) of models based on functional connectivity features, non-
coupling EEG features, and a combination of both sets of features
were 0.89 (0.89–0.90), 0.89 (0.83–0.91), and 0.92 (0.92–0.92),
respectively. Fig. 4 displays the ROC curves in the training and
the test set of the best classifiers for each set of features used in
this study.

3.5. Post-hoc connectivity analysis

Only 5 features were selected in all the best classifiers at least in
80% of the iterations of the feature selection algorithm: PLV theta
Cz, PLV theta T3, PLV alpha Fp2, ciCOH Beta Cz, PLV Delta F3. The
statistical tests comparing average connectivity in these parame-
ters and frequency bands are shown in Fig. 5. Delta PLV connectiv-
ity shows significantly higher values in poor outcome patients after
24 hours from cardiac arrest. On the other hand, alpha and theta
PLV connectivity have significantly higher values in good outcome
patients at 12 hours and 24 hours after cardiac arrest. Neverthe-
less, this difference becomes insignificant at 48 hours after cardiac
Fig. 3. ROC curve for the best prediction of good outcome in the test set, with the
LSVM classifier at the 12 hour temporal subset. Sensitivity at 95% specificity is
marked in the figure, and classification parameters are expressed as median (95%
Confidence Intervals). ROC: Receiver Operating Curve, LSVM: Linear Support Vector
Machine.
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arrest. Finally, Beta2 ciCOH is always significantly higher in poor
outcome patients.
4. Discussion

We show that the use of EEG-based functional connectivity fea-
tures can significantly improve reliable early prediction of poor
outcome in comatose patients after cardiac arrest. We evaluated
their predictive ability using machine learning algorithms, both
for the functional connectivity measures alone and in combination
with non-coupling EEG metrics. In both cases the results outper-
form current approaches in medical practice (Sandroni et al.
2014; Rossetti et al. 2016). The combination of coupling and
non-coupling features achieves significantly higher predictive val-
ues than any other method in literature until now (Tjepkema-
Cloostermans et al. 2013, 2017, 2019; Hofmeijer et al. 2015;
Zubler et al. 2016, 2017; Sondag et al. 2017; Nagaraj et al. 2018;
Ruijter et al. 2018, 2019). Given that prognostication of postanoxic
coma patients still remains a challenge, the development of a
methodology for a reliable outcome prediction in these patients
is of high necessity. The classifier presented in this study stands
as a great improvement in sensitivity and specificity when com-
pared to any previous methodology, allowing for avoidance of
futile treatment, minimizing erroneous classification of patients
that would survive, and helping in the patient’s relatives emotion-
ally compromised situation.

All functional connectivity features in this study were calcu-
lated offline, making this technique less suitable to implement in
today’s clinical practice. However, their calculation and testing
take only a few minutes in a conventional laptop, and EEG devices
are rapidly evolving and will soon be able to calculate these param-
eters in real time. Regarding this aspect, it is also important to
remark the simplicity of the 19-electrode EEG setting used in this
project.

4.1. Functional connectivity as outcome predictor

Using functional connectivity features alone for prediction of
poor outcome, we obtained a better sensitivity than approaches
currently used in clinical practice (Sandroni et al. 2014; Rossetti
et al. 2016), such as the bilateral absence of N20, while maintaining
a 100% specificity. Performance equals that of other quantitative
EEG approaches that have been proposed (Zubler et al. 2016,
2017; Tjepkema-Cloostermans et al. 2017; Nagaraj et al. 2018).
Amongst these, one used functional connectivity (Zubler et al.
2017), which reported an AUC of 0.81, a sensitivity of 54% (27–
83) by selecting the 100% specificity point at the test ROC curve,
using a dataset of 94 patients. As compared to this previous report,
our classifiers using only functional connectivity features for pre-
diction of poor outcome achieved a higher AUC (0.89 (0.89–
0.90)), and a similar sensitivity (51% (36–56)) at specificity of
100% (100–100). These improvements may have resulted from
the larger number of features and using sensitivity at 100% speci-
ficity for the optimization of the classifiers at the training phase.
The larger cohort resulted in smaller confidence intervals. To



Fig. 4. ROC curves for prediction of poor outcome from the best classifiers at the training (blue) and the test set (red) for each subset of features (A: functional connectivity; B:
non-coupling features; C: combination of both feature groups). The markers highlighted along the curves represent the performance of the classifiers. ROC: Receiver
Operating Curve, LSVM: Linear Support Vector Machine, BT: Bagged Trees. All classification parameters are expressed as median (95% Confidence Intervals).

Fig. 5. Differences in delta, beta2, theta and alpha connectivity between good outcome (blue) and poor outcome (orange) patients. A: average PLV connectivity over all
electrodes in the delta frequency band over time. B: average ciCOH connectivity over all electrodes in the beta2 frequency band over time. C: average PLV connectivity over all
electrodes in the theta frequency band over time. D: average PLV connectivity over all electrodes in the alpha frequency band over time. * corresponds to p-values < 0.05; **
corresponds to p-values < 0.05 * 10�5. PLV: Phase Locking Value; ciCOH: corrected imaginary coherence.
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obtain a comparison with visual inspection, we compared our
results with those of (Ruijter et al. 2019), which give a recent
insight on the performance of visual inspection analysis. The best
performance for prediction of poor outcome in this study was
achieved inspecting data at 12 hours after cardiac arrest, showing
a sensitivity of 47% (42–51 95%CI) and a specificity of 100% (100–
100 95%CI), which are similar results to those obtained with our
classifiers trained only with functional connectivity. Regarding
prediction of good outcome, functional connectivity achieves a
higher sensitivity (69% (69–69)) at 95% specificity (95% (95–95))
than previous work in the field, which reported sensitivities of
approximately 50% at 90% specificity (Tjepkema-Cloostermans
et al. 2013, 2017; Sondag et al. 2017; Ruijter et al. 2018, 2019).

However, it is the addition of functional connectivity features to
non-coupling EEG features that brings out the most important
finding in this study. The combination of both sets of features
showed a better performance in predicting poor outcome than
using each set individually, and, to the best of our knowledge, a
better performance than any other prognostication methodology
1318
for postanoxic coma proposed until now, both based on visual
inspection and quantitative analysis (Cloostermans et al. 2012;
Tjepkema-Cloostermans et al. 2013, 2015, 2017, 2019; Hofmeijer
et al. 2015; Zubler et al. 2016, 2017; Sondag et al. 2017; Nagaraj
et al. 2018; Ruijter et al. 2018, 2019). However, it is difficult to
fairly compare all these approaches because of the different data-
sets used in each of them, and the different methodology for clas-
sification and validation strategy. The improvement in
classification obtained with our new model may have resulted
from the combination of the high sensitivity at 100% specificity
in the training set (Se100 ¼ 80%, Fig. 4B) from the non-coupling
EEG features, and the high generalizability of the functional con-
nectivity models, observed from the similarity of both its training
and test ROC curves (Fig. 4A).

The highest predictive values were achieved using data from
both 12 and 48 hours after cardiac arrest, showing that this
approach can be used for early detection of poor outcome patients.
In accordance with previous reports, most of the prognostic infor-
mation in the EEG seems to be found as early as 12 hours after the
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cardiac arrest (Hofmeijer et al. 2015; Tjepkema-Cloostermans et al.
2017; Ruijter et al. 2019). However, most classifiers benefitted
from the addition of the recordings 48 hours after this episode.
One possible explanation for this is that, after 12 hours, good out-
come patients might already start showing a transition towards a
continuous EEG state. This might be especially true for functional
connectivity, as it could indicate a normalization of the communi-
cation between different cortical areas. Using a similar logic, the
recordings 48 hours after cardiac arrest would procure information
about those patients less likely to recover, probably because they
still show a brain pattern in the range of brain damage and did
not migrate towards normalization yet. The data collected at 24
hours after cardiac arrest could represent a grey area in which
the evolution of both good outcome and poor outcome patients
is still not clear. This emphasizes the need for a long-termmonitor-
ing of patients’ brain activity, as the information after 12 and after
48 seems complementary for a correct prognosis.

The feature selection process revealed a higher predictive
power from PLV parameters, which were twice more likely to be
selected as relevant, and a lower contribution of COH features to
the classifiers, which were selected less than 10% the times than
PLV metrics. The rest of the connectivity features calculated were
selected approximately half the times compared to PLV parame-
ters. It is important to remark that PLV features were mostly
extracted from delta, theta and alpha frequency bands and from
the 12 h subset. Our conclusion is that a multi-parameter approach
as the one performed in this study helped the classifiers achieve a
higher accuracy, as we could assess both linear and nonlinear con-
nectivity, and both zero-lag connectivity and lagged connectivity.
While the connectivity measures included in this study are chosen
based on their widespread use in previous studies, and because of
their complementarity to each other, many other measures are
however available, meaning that future studies can investigate
on the additional performance in outcome prediction these can
provide.

Additionally, the feature selection process showed 5 parameters
that were included in at least 80% of the iterations throughout all
the best classifiers: PLV theta Cz, PLV theta T3, PLV alpha Fp2,
ciCOH Beta Cz, PLV Delta F3. In our case, these parameters refer
to the average connectivity of those specific channels with the rest
of the EEG electrodes. The post-hoc analysis revealed an increased
functional connectivity in the delta and beta2 bands, which is in
accordance with literature. Previous studies report an association
between poor outcome and increased power or connectivity in
these bands, both in postanoxic comatose patients and subjects
showing minimally conscious or vegetative state (Nenadovic
et al. 2014; S�erban et al. 2017; Chatelle et al. 2018). On the other
hand, connectivity in the theta and alpha bands had a different
behaviour. At 12 hours after cardiac arrest, good outcome patients
presented a higher PLV than poor outcome patients (Fig. 5C and
5D). However, the difference in theta and alpha PLV connectivity
is progressively lost in subsequent temporal datasets (Fig. 5C and
5D, from p-values < 0.05 * 10�5 at 12 and 24 hours after cardiac
arrest, to p-values of 0.23 and 0.94 for theta and alpha connectivity
at 48 hours after cardiac arrest respectively). The pathophysiology
of this evolution is not well understood yet, but initial suppression
of excitatory and inhibitory synaptic activity with a subsequent
variable long-term potentiation is a potential mechanism that
has been proposed in (Ruijter et al. 2017). Future studies should
thrive to clarify the role of these frequency bands in postanoxic
coma.

4.2. Strengths and limitations

Our work was based on a large prospectively collected cohort,
implying a high data quality and ascertainment. The complemen-
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tarity of the calculated features allowed for the creation of classi-
fiers that have avoided overfitting, thus presenting a high
performance in the prediction task at hand.

On the other hand, the study has some limitations. Firstly, we
did not incorporate any local features in our analyses, since posta-
noxic encephalopathy affects the whole brain. Moreover, our EEG
setup has a relatively low spatial resolution and individual-
electrode based metrics are sensitive to noise and artifacts. Given
that the setup of these EEG caps requires special skills, it would
also be interesting to test the prognostic value of the metrics pre-
sented in this study when acquired through technologies that are
more user-friendly and wearable, such as dry-electrode EEG sys-
tems. Secondly, although we used cross validation and split the
data in training and test set, there is no truly external validation
set. The performance of the classifiers trained with functional con-
nectivity features combined from different time points showed a
reduction in both sensitivity and specificity when evaluated in
the test set. At the same time, the BT classifiers generally did not
show a sensitivity as high as that of the LSVM classifiers. Overfit-
ting might be the reason behind these results, favored by the
higher number of features included in the classification models
in the first case, and by the higher complexity of the BT classifier
in the second. Lastly, a potential problem in unblinded studies
investigating diagnostic accuracy is the self-fulfilling prophecy
(Geocadin et al. 2012). This characterizes almost all studies on this
topic. EEG classifications were assigned offline, blinded for
patients’ outcome, but attending physicians were not blinded to
the EEG registration. However, it is important to state that guide-
lines on treatment withdrawal were strictly followed, and these
do not include any aspects from the EEG during the first 72 hours.

5. Conclusion

We demonstrate that EEG functional connectivity features are
reliable predictors of poor neurological outcome and add to EEG
based poor outcome prediction after cardiac arrest. The combina-
tion of functional connectivity features and EEG non-coupling fea-
tures led to higher predictive values than any previously reported
model for prediction of poor outcome (sensitivity = 73% (50–76),
specificity = 100% (100–100) and AUC = 0.92 (0.92–0.92)).
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