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Abstract

Adolescent Binge Drinking (BD) has become an increasing health and social concern,

with detrimental consequences for brain development and functional integrity. How-

ever, research on neurophysiological and neuropsychological traits predisposing to

BD are limited at this time. In this work, we conducted a 2-year longitudinal magne-

toencephalography (MEG) study over a cohort of initially alcohol-naïve adolescents

with the purpose of exploring anomalies in resting-state electrophysiological net-

works, impulsivity, sensation-seeking, and dysexecutive behaviour able to predict

future BD patterns. In a sample of 67 alcohol-naïve adolescents (age = 14.5 ± 0.9),

we measured resting-state activity using MEG. Additionally, we evaluated their neu-

ropsychological traits using self-report ecological scales (BIS-11, SSS-V, BDEFS,

BRIEF-SR and DEX). In a second evaluation, 2 years later, we measured participant's

alcohol consumption, sub-dividing the original sample in two groups: future binge

drinkers (22 individuals, age 14.6 ± 0.8; eight females) and future light/no drinkers

(17 individuals, age 14.5 ± 0.8; eight females). Then, we searched for differences pre-

dating alcohol BD intake. We found abnormalities in MEG resting state, in a form of

gamma band hyperconnectivity, in those adolescents who transitioned into BD years

later. Furthermore, they showed higher impulsivity, dysexecutive behaviours and

sensation seeking, positively correlated with functional connectivity (FC). Sensation

seeking and impulsivity mainly predicted BD severity in the future, while the relation-

ship between dysexecutive trait and FC with future BD was mediated by sensation

seeking. These findings shed light to electrophysiological and neuropsychological

traits of vulnerability towards alcohol consumption. We hypothesise that these dif-

ferences may rely on divergent neurobiological development of inhibitory neuro-

transmission pathways and executive prefrontal circuits.
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1 | INTRODUCTION

Binge Drinking (BD) has become an extended pattern of alcohol con-

sumption among adolescents related to many health and social distur-

bances.1 It is characterised by the intake of at least four (for women) or

five (for men) standard alcohol units (SAUs) in a short interval of time.1

Such a pattern of alcohol misuse is particularly hazardous during ado-

lescent neurodevelopment.2,3 It causes substantial alterations in the

brain's integrity, for example, in structural4,5 and functional aspects,6–9

as well as neuropsychological alterations,10 and could also increase psy-

chological traits such impulsivity and disinhibited sensation seeking.10

However, the cross-sectional nature of the aforementioned works

does not allow for making assumptions regarding predisposition factors

that could make some individuals prone to engage in alcohol misuse. In

this sense, some authors have proposed that particular profiles,

characterised by higher impulsivity, sensation seeking, and dysexecutive

behaviours, may play a predisposition role in the development of such

habits.11 In this regard, some of the neurobiological changes that coin-

cide with puberty result in a desynchronisation between the maturation

of subcortical regions (i.e. brain reward system) and later, cortical regions

(prefrontal control systems).12 These changes are related to increases in

sensation-seeking and impulsivity profiles, promoting the search for rein-

forcing substances such as alcohol, and linked in turn to lower cognitive

control abilities needed to control maladaptive behaviours.13,14 However,

although these characteristics are typical of adolescents, they are not

present in all individuals equally, being accentuated in those adolescents

that will develop higher alcohol intake.13,14

However, studies evidencing the neurobiological counterpart of

those profiles are scarce at this time. An increasing number of studies

have outlined differences in brain structure and hemodynamical func-

tioning15,16 linked to future alcohol use. Furthermore, understanding

the complex mechanism that governs these challenging behaviours

would require the study of large-scale brain functional interactions

under the scope of functional networks.17

Magnetoencephalography (MEG) provides an optimal balance of

spatial and temporal resolution when studying neurophysiological

activity networks.18 The study of the functional connectivity (FC) –

defined as the existence of statistical dependencies between the time

series of two or more brain regions19 – may reveal important informa-

tion regarding the integrity and efficiency of functional networks.20,21

The resting-state networks, based on the measure of synchronisation

in spontaneous and task-free oscillatory activity,22 are able to mani-

fest neurophysiological abnormalities regarding diverse brain states,18

including alcohol use disorders (AUDs) and BD-related alterations.

In this vein, only a few studies evidenced abnormal resting-state

connectivity related to BD in college students6,23 and in association

with the development of subsequent BD problems.24,25 In general

terms, after BD onset, those studies reported patterns of cortical

hypersynchronisation, while predating BD, some functional magnetic

resonance imaging (fMRI) studies reported cortical hyperconnectivity24

and reduced cortico-subcortical connectivity.25 Nonetheless, despite

the important evidence provided by those studies, it remains unknown

how BD predisposing profiles may be depicted by cortical electrophysi-

ological dynamics. To our knowledge, only one MEG work explored this

matter experimentally in relation to inhibitory control (IC) processes.26

However, it is not entirely clear whether such abnormal connectivity is

dependent of a particular set of cognitive processes (i.e. executive

functions) or relies on deeper neurobiological features.

Therefore, the aim of the present work is to characterise the

baseline cognitive and electrophysiological predisposition profiles in

the future development of BD behaviours. For that purpose, we car-

ried out a longitudinal study over a cohort of initially alcohol-naïve

adolescents. We measured their neuropsychological traits by ecologi-

cal self-reported scales, while their electrophysiological FC was mea-

sured by MEG resting-state recordings. After a 2-year follow-up

period, differences prior to alcohol intake were analysed between

adolescents who became binge drinkers and those who remained

abstainers or very light drinkers. Additionally, we aimed to explore

which neuropsychological and electrophysiological factors would be

most predictive of future consumption severity. From this standpoint,

we hypothesise that future BDs will show patterns of increased FC

prior to the onset of alcohol BD. This abnormal connectivity would

involve regions primarily involved in adolescent cortical neuro-

maturation, such as medial and lateral prefrontal cortex (PFC), parietal,

and medial temporal structures.27 Furthermore, based on previous

work (Ant�on-Toro et al, 2021), we hypothesise that resting-state

hypersynchronisation would occur predominantly in the fast fre-

quency bands (such as alpha, beta and gamma bands). Along with

functional anomalies, we expect higher profiles of impulsivity, dis-

executive behaviours and uninhibited sensation seeking. Finally, we

will explore the relationship between electrophysiological, neuropsy-

chological variables and future BD behaviours. To our knowledge, this

is the first study to address resting-state neurophysiological networks

in relation to BD predisposition, providing an important step forward

in the detection of neurofunctional risk factors associated with the

development of substances misuse.

2 | METHODS AND MATERIALS

2.1 | Participants

A total of 67 right-handed participants (mean age = 14.5 ± 0.9) with

no family history of AUD, neurological or psychiatric disorders, and no
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previous reports of alcohol consumption, measured by the Alcohol

Use Disorders Identification Test (AUDIT), were recruited from differ-

ent educational centers in the region of Madrid. All participants com-

pleted a longitudinal study with two stages of assessment, with a

2-year follow-up period between both assessments. At the end of the

study, 39 of the 67 participants were used for the analysis. The partic-

ipants and their legal guardians signed an informed consent form at

each stage of the study, in accordance with the declaration of Helsinki

and approved by the ethical committee of the Complutense Univer-

sity of Madrid.

2.2 | MEG acquisition

MEG data were acquired using a 306-channel Elekta Neuromag sys-

tem located in the Center for Biomedical Technology (Madrid, Spain),

using an online anti-alias filter between 0.1 and 330 Hz and a

1000 Hz sampling rate. Environmental noise was reduced offline

using the temporal extension of the signal space separation method,28

using the software Maxfilter (v 2.2 Elekta AB, Stockholm, Sweden),

and subject movements were compensated using the same algorithm.

We used FieldTrip package29 in MatLab environment, for artifact

inspection and removal. Finally, the acquired data were segmented

into 4-s epochs of artifact-free data. The procedure is extensively

detailed in the “supporting information materials and methods”.

2.3 | MRI acquisition

A General Electric Optima MR450w 1.5 T machine was used to obtain

structural magnetic resonance imaging (MRI) data. Imaging protocol

consisted in 3D T1-weighted high-resolution images with parameters:

TE = 4.2 ms, TR = 11.2 ms and TI = 450 ms; flip angle = 12�, FoV =

100; acquisition matrix = 256 � 256 and slice thickness = 1 mm.

2.4 | Neuropsychological scales

We selected widely used scales to assess traits of impulsivity, sen-

sation seeking and dysexecutive behaviours in a highly ecological

way by means of self-report scales of daily life behaviours. First,

the Barratt impulsivity scale (BIS-11, Martínez-Loredo et al, 201530)

consists of 30 items to measure impulsive personality traits. Sec-

ondly, the sensation-seeking scale (SSS-V; Zuckerman, 200731) con-

sists of 40 dichotomous items assessing four dimensions: thrill and

adventure seeking, disinhibition, experience seeking and susceptibil-

ity to boredom. The disinhibition scale is of particular interest in

this work, as it reflects the tendency to experience risky behav-

iours. Finally, we choose three different scales to inform regarding

dysexecutive behaviours, as they focus on different aspects and

behaviours related with executive dysfunction: the Barkley deficits

of executive function scale (BDEFS; Barkley, 201232) in its abbrevi-

ated version, consisting of 20 items, which assesses symptoms of

the PFC dis-executive syndrome associated with activities of daily

living. The behaviour rating inventory of executive function (BRIEF-

SR, adolescent's version; Gioia et al, 201033), consisting of 89 items,

which evaluates a wide spectrum of dysexecutive behaviours, clas-

sified into two general subscales (behavioural regulation index and

metacognitive index). The dysexecutive questionnaire (DEX;

Pedrero Pérez et al, 200934) consists of 20 items for the evaluation

of frontal dysfunctions.

2.5 | Procedure

In a first stage, all participants were assessed using an ecological

battery of self-report scales for the assessment of daily life behav-

iours in the traits of impulsivity (BIS-11), sensation seeking (SSS-V)

and dis-executive behaviours (BDEFS, BRIEF-SR and DEX), as well

as their alcohol consumption habits using the AUDIT questionnaire.

The electrophysiological activity was obtained by MEG recording in

the resting state with eyes closed and brain structure by

individual MRI.

Two years later, 53 participants completed the second phase of

the assessment protocol, which included a comprehensive measure-

ment of BD patterns using the AUDIT questionnaire and a semi-

structured interview. During this interview, each participant was asked

about the existence of drinking episodes during the 2-year follow-up

phase. If the response was affirmative, they were asked to detail as pre-

cisely as possible a “typical” drinking episode during the last 6 months

(i.e. amount of consumption, type of drink, hours of duration of the epi-

sode and the number of episodes in the last year). Based on this infor-

mation, the participants were divided into two groups: a group of

future BD consumers (fBD), with a drinking pattern of 4/5 (women/

men) or more SAUs per session; and a group with those participants

who remained abstainers or with a very light consumption (fLD), with

2 or less SAUs per session. Those participants with intermediate alco-

hol consumption, incomplete drinking assessment or poor MEG signal

quality, were discarded from the final sample (14 participants). Thus,

the final sample consisted of 22 fBD (mean age = 14.19 ± 0.65;

9 females; mean UBEs = 5.77 ± 1.69) and 17 fLD (mean age = 14.18

± 0.88; 8 females; mean UBEs = 1.02 ± 0.94).

2.6 | Source-space reconstruction

MEG data were transformed to source space using a realistic single

shell35 generated from the individual T1 image in SPM12 as for-

ward model and a linearly constrain, minimum variance beamformer

as inverse model.36 The data were reconstructed into 2459 source

positions located inside the cranial cavity. These source positions

were labelled according to the Automated Anatomical Labelling

atlas (AAL),37 and only the 1188 positions labelled as 1 of 76 corti-

cal areas were considered. We reconstructed each source indepen-

dently for each classical band: theta (4 to 8 Hz), alpha (8 to 12 Hz),

low beta (12 to 20 Hz), high beta (20 to 30 Hz) and low gamma

ANTÓN-TORO ET AL. 3 of 11
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(30 to 45 Hz). For this, we filtered the data using a finite impulse

response filter of 1800th order designed using a Hann window,

adding 2 s of real data at each side as padding. Last, we used the

epoch-averaged covariance matrix to build the adaptive spatial

filter.

2.7 | FC analysis

The FC was estimated under the hypothesis of phase synchronisation

using the phase locking value (PLV)38 over segments of 4 s of dura-

tion. In the first step, the PLV was calculated separately for each pair

of source positions, generating an FC matrix of 1188 by 1188. Then,

we performed a study of the functional synchronisation between all

cortical regions of interest (ROIs) predefined by the AAL39 through a

ROI-based synchronisation analysis. To do so, we calculated the root-

mean-square of PLV values of all links connecting each pair of cortical

areas of the AAL atlas, generating a 76 by 76 whole-brain FC matrix.

2.8 | Statistical analysis

In a first step, we compared the PLV values between each pair of ROIs

in both groups using an analysis of covariance (ANCOVA) test with

age and sex as covariates. The resulting p values were corrected for

multiple comparisons using a false discovery rate (FDR40 of 10%, and

for source leakage bias using the correlation of spatial filters as covari-

ate; see “supporting information”). In the next step, for those links

that resulted significant, we calculated the principal components of

connectivity links using a principal component analysis (PCA) (Joliffe

and Morgan, 1992). Regarding neuropsychological scales, we used

PCA to calculate the principal dysexecutive component (EXE-pca1)

from the scores of the three dysexecutive scales (BDEFS, BRIEF and

DEX). From this point, first, we performed a between-group ANCOVA

comparison for BIS-11, SSS-V and EXE-PCA1 scores, as well as PLV

components (PLV-pca1 and PLV-pca2), using sex and age as

covariates.

Next, we explored the correlation between FC components

(PLV-pca1 and PLV-pca2), together with neuropsychological traits

(EXE-pca1, BIS-11 and SSS-V) and alcohol consumption ratio (num-

ber of SAUs), by means of one-tailed Spearman's correlation. Those

variables with a significant correlation were then introduced in a

multivariate stepwise regression model, in order to depict which

factors were more predictive of alcohol consumption. Lastly, as a

post-hoc analysis, we conducted a mediation analysis41 to explore

the relationship between these predictive variables and those that

showed between-group differences but were not able to predict

future BD.

3 | RESULTS

3.1 | Functional connectivity

The FC analysis showed a pattern of hyperconnectivity in the fBD

group in the gamma frequency band when compared to the fLD

group. After FDR correction and suppression of source leakage bias,

37 links connecting pair of ROIs remained significant (p < 0.01). Such

significant links were located between pairs of interhemispheric pre-

frontal regions, between left prefrontal and medial parietal regions

(outlining bilateral posterior cingulate cortex, PCC), and between

intrahemispheric occipital and temporal regions. Figure 1 shows the

F IGURE 1 Representation of the significant
results of the FC analysis. The red links show a
higher connectivity between the pairs of
connected regions for the fBD group. All results
were corrected by FDR at 0.1

4 of 11 ANTÓN-TORO ET AL.
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cortical distribution of significant links. PCA analysis revealed two

main components, explaining 54% (PLV-pca1) and 12.6% (PLV-pca2)

of the information, respectively. In alpha and beta bands, we found

differences in FC links, but they did not survive FDR correction at

10%, being not reported as significant. However, these links only

become significant after an FDR correction at 15%. Alpha and beta

band results are shown in the section “Alpha and beta band FC

results” in the supporting information document.

3.2 | ANCOVA for neuropsychological scales and
FC components

First of all, we calculated a principal dysexecutive component from

dysexecutive scales, obtaining a principal component (EXE-pca1) with

the 90% of the information regarding dysexecutive behaviours, which

we used in the subsequent analyses.

ANCOVA results showed significant differences between fBD

and fLD groups for BIS-11 (p = 0.049), SSS-V (p = 0.002) and EXE-

PCA1 (p = 0.019), as well as PLV-pca1 (p < 0.001). We did not find

significant differences for PLV-pca2 (p = 0.394). These results point

to a higher level of impulsivity, sensation seeking and dysexecutive

behaviours prior to alcohol BD onset. Only the covariate of sex

exhibited significant differences in SSS-V scale (p = 0.011). Table 1

shows the results and statistical parameters of this analysis.

3.3 | Correlations with alcohol consumption

The results of correlation analysis showed significant and positive

relationships with the consumption ratio for SSS-V (p = 0.001), BIS

11 (p = 0.016), EXE-pca1 (p = 0.016) and PLV-pca1 (p = 0.001). We

also found significant positive associations between neuropsychologi-

cal and FC variables, as well as a significant positive correlation

between sensation-seeking scores (SSS-V) and sex (see Table 2).

Figure S1 in the “supporting information” shows the connectivity links

that has significant correlations with neuropsychological traits.

3.4 | Multivariate regression model

Those variables that had a significant association with future alcohol

consumption (i.e. SSS-V, BIS-11, EXE-pca1 and PLV-pca1) were intro-

duced in a multivariate stepwise regression model. Results revealed a

significant model including SSS-V and BIS-11 variables, which

explained the 32% of the variance (R2 = 0.32). The EXE-pca1 and

PLV-pca1 variables were not significant predicting alcohol consump-

tion scores in this model. Due to the high correlation between SSS-V

and FC PLV-pca1, as exploratory analyses, we tested a regression

analysis removing SSS-V from the model. This analysis revealed that

when sensation seeking is removed, both variables (EXE-pca1 and

PLV-pca1, but not BIS-11) were predictors of future alcohol consump-

tion (R2 = 0.31). Table 3 and Figure 2 show the statistical parameters

and graphical distribution of these regression models. In order to fur-

ther explore the relationship between sensation seeking, FC and

dysexecutive components, we conducted an exploratory mediation

analysis. We hypothesised that FC and dysexecutive traits would be

predictive of alcohol consumption throughout its association with

sensation-seeking traits.

TABLE 1 ANCOVA results

Variables

fLD n = 17 fBD n = 22

M (SD) M (SD) F p ⴄ2

BIS-11 46.70 (10.28) 54,68 (13.01) 4.14 0.049* 0.103

SSS-V 3.88 (2.14) 5,77 (1.54) 10,81 <0.01** 0.231

EXE-pca 2.88 (4.10) 5,86 (5.04) 6.06 0.019* 0.144

PLV-pca1 �0.09 (0.06) 0,07 (0,16) 16.50 <0.01** 0.314

PLV-pca2 �0.01 (0.03) 0.01 (0.09) 0.74 0.394 0.020

Note: Results of ANCOVA comparison between groups. BIS-11, Barrat impulsivity scale; SSS-V, Sensation-seeking scale form V; EXE-pca, principal

component of dysexecutive behaviours (BDEFS, BRIEF and DEX scales); PLV-pca1, principal component (54%) of connectivity differences; PLV-pca2,

second component (12.6%) of connectivity differences. Sex and age were controlled as covariates.

Sex showed a significant effect with SSS-V scale (p = 0.011). Corrected for multiple comparisons with Bonferroni method.

*p < 0.05; **p < 0.01.

TABLE 2 Correlation analysis results

Variables 1 2 3 4 5

1. BD ratio 1

2. BIS-11 0.342* 1

3. SSS-V 0.506** 0.244 1

4. EXE-pca 0.346* 0.510** 0.322* 1

5. PLV-pca1 0.499** 0.320* 0.417** 0.303* 1

Note: Results of Spearman's correlation with alcohol consumption. BD

ratio, number of standard alcohol units drank per session; BIS-11, Barrat

impulsivity scale; SSS-V, Sensation-seeking scale form V; EXE-pca,

principal component of dysexecutive behaviours (BDEFS, BRIEF and DEX

scales); PLV-pca1, principal component (54%) of connectivity differences.

*p < 0.05; **p < 0.01.
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3.5 | Exploratory mediation analysis

Two different mediation models were conducted to further under-

stand the association between sensation-seeking traits, dysexecutive

behaviours and electrophysiological connectivity in relation to the

development of BD habits. For both models, sensation-seeking traits

(SSS-V scores) were used as the mediating mechanism and the alcohol

consumption ratio (SAUs) as the dependent variable. For the first

model, PLV-pca1 was used as the independent variable. The results

showed that there was complete mediation, explaining 30% of the

variance, in which FC has an effect on future alcohol consumption

(SAUs) through the mediation mechanism disinhibited sensation seek-

ing (SSS-V) (ab = 0.14; CI = [0.019; 0.309]).

In the second model, we introduced EXE-pca1 as the independent

variable. The overall model was significant, explaining 29% of vari-

ance. However, in this model the direct effect of dysexecutive behav-

iours (EXE-pca1) on alcohol consumption ratio and the indirect effect

through the mediation mechanism (sensation seeking) did not survive

after bootstrapping correction. Figure 3 shows the representation and

statistical parameters of both models.

F IGURE 2 Slopes of partial regression for significant predictors of future BD intensity. Left panel shows the dispersion graph and the slope of
disinhibited sensation seeking (SSS-V), R2 = 0.191. Right panel shows the dispersion graph and the slope of impulsivity (BIS-11), R2 = 0.131.
Total regression model was significant, with a R2 = 0.323

TABLE 3 Multivariate stepwise regression model results

Variables B E.T (B) β t p R2
cor

Constant �2.99 1.79 �1.66 0.104 0.32

BIS-11 0.075 0.032 0.325 2.32 0.026*

SSS-V 0.575 0.197 0.407 2.91 0.006**

EXE-pca 0.167 0.976 0.336

PLV-pca1 0.226 1.43 0.161

Post-hoc model

Constant 3.70 0.393 9.43 0.000 0.31

BIS-11 0.144 0.849 0.402

EXE-pca 0.033 0.014 0.330 2.29 0.028*

PLV-pca1 6.77 2.63 0.369 2.56 0.015*

Note: Results of multivariate step-wise regression model. Dependent variable, number of standard alcohol units drank per session (BD ratio); BIS-11, Barrat

impulsivity scale; SSS-V, Sensation-seeking scale form V; EXE-pca, principal component of dysexecutive behaviours (BDEFS, BRIEF and DEX scales); PLV-

pca1, principal component (54%) of connectivity differences.

*p < 0.05; **p < 0.01.
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4 | DISCUSSION

This study aimed to characterise neuropsychological traits and elec-

trophysiological connectivity profiles as potential predictors of the risk

of developing alcohol BD behaviours during adolescence. Our main

results highlighted those adolescents who engaged in BD 2 years later

showed, prior to BD onset, abnormal resting-state gamma-band hyp-

erconnectivity. In addition, they exhibited increased traits of impulsiv-

ity, sensation seeking and dis-executive behaviours. Furthermore, we

underline the importance of impulsivity and sensation-seeking traits

as main predictors of BD, as well as the role of the latter, as a

mediator of the relationship of BD with dysexecutive and basal

hyperconnectivity.

Several works have pointed out the association between impul-

sivity, sensation seeking, and low executive regulation with the devel-

opment of AUD and BD.11,42 Also, such a relationship has been

confirmed experimentally in previous studies.10,26,43 The development

of these neuropsychological traits has been described as the conse-

quence of neglected development of cognitive, emotional or behav-

ioural self-regulation (SR) abilities.44,45 SR skills rely on executive

control processes as cognitive and IC capacities,45,46 which develop

through the lifespan, but particularly during adolescence.27,47 This

new social and motivational context opens the door to the exploration

of new experiences and forms of leisure, leading in most cases to sub-

stances of abuse. According to dual systems maturation theories,12

such motivational transition comes together with profound matura-

tional changes in subcortical reward systems, followed by the high-

order control networks. In sum, the different dimensions that build SR

skills depend, in turn, on the optimal functioning of such cortical

systems,48 and the balance between reward-driven behaviours and

self-control abilities.45

Sensation seeking has been demonstrated to play an important

role in risky and rewarding behaviours.49 However, sensation seeking

itself cannot be considered an isolated factor for maladaptive behav-

iours such BD.31 This psychological trait is the motivational drive that

exposes the individual to risky situations, where prefrontal executive

systems must exert their control to suppress inadequate behaviour

and negative outcomes. In this regard, our results are in line with pre-

vious studies that have pointed out the mediating relationship of sen-

sation seeking with neurocognitive abilities in the outcome of

maladaptive and drinking behaviours.50,51 Furthermore, we found that

sensation seeking is an important mediating mechanism in electro-

physiological dynamics and appears to be a crucial factor in the devel-

opment of future BD through its relationship with abnormal

hyperconnectivity prior to alcohol consumption. Thus, abnormal func-

tional dynamics in conjunction with dysfunctional executive control

seem to modulate the consequent risk of developing hazardous habits

such as BD among adolescents.

Our findings on the FC profiles highlight the presence of a

gamma-band hypersynchronisation for the fBD group, localised

between the prefrontal, medial fronto-parietal and occipito-temporal

interhemispheric networks. This functional distribution seems to

encompass the main resting-state networks, such as the Default

Mode Network (DMN), the Salience Network (SN) and the Executive

Core Network (ECN).52 Within these networks, we find core differ-

ences in the medial parietal regions (particularly in the PCC),53 as well

as medial (including the anterior cingulate cortex, ACC) and orbital

PFC.54 Functional alterations in DMN have been widely associated

with several psychiatric and neurological disorders, as well as with BD

and AUD.6,55 Moreover, abnormalities in its functional dynamics may

be related to several difficulties in the performance of executive con-

trol processes.56,57 Similarly, SN and ECN abnormalities, which under-

lie the development of high-order cognitive capacities,52,58 have also

appeared altered in BD and AUD59,60 and other psychiatric conditions

with dysfunctional behavioural regulation (i.e. attention deficit hyper-

activity disorder). However, resting-state FC abnormalities, before

F IGURE 3 Results of
exploratory mediation models.
Upper panel shows mediation
model using disinhibited
sensation seeking (M; SSS-V) as
mediator between dysexecutive
component (X; EXE-pca1) and
future BD intensity (Y; BD ratio).
Lower panel shows mediation

model using disinhibited
sensation seeking (M; SSS-V) as
mediator between functional
connectivity component (X; EXE-
pca1) and future BD intensity (Y;
BD ratio)
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alcohol BD, have been scarcely studied. To our knowledge, only one

work performed using fMRI explored global FC profiles in this popula-

tion, reporting similar patterns of functional hyperconnectivity, and

increased impulsivity.24 However, to date, electrophysiological evi-

dence remained unexplored. While few studies have investigated

basal electrophysiological FC for BD and AUD, overall, our findings

appear to be in line with the hypersynchronisation characteristic of

these populations.6,23 Furthermore, the present results seem to indi-

cate, for the first time, that such deviations in resting-state FC may

exist before the onset of alcohol abuse. Thus, early abnormalities in

these core functional networks may be associated with dysfunctions

in SR skills and, consequently, with behavioural dysregulations during

adolescence. This interpretation seems to be supported by the posi-

tive correlations between FC and neuropsychological traits and, in

particular, by the mediating role of sensation seeking in the associa-

tion between abnormal FC and future alcohol abuse.

The origin and function of local and large-scale gamma oscilla-

tions have been related to various cognitive processes and sensory

integration.61 Its neurobiological origin is commonly located in the

interleaved activity of inhibitory interneurons complexes (INI) and

pyramidal neurons.62 Its fundamental role is to stabilise the cortical

excitation/inhibition balance through GABAergic inhibition of pyra-

midal neurons. This function is regulated mainly by dopaminergic

afferents (through DRD1 and DRD2 receptors), and glutamatergic

afferents on a lesser scale (through NMDA receptors).63 Interest-

ingly, the regulation of cortical excitability exerted by INI complexes

does not become fully optimised until early adulthood (Tseng &

O'Donnell, 200764). Therefore, dysfunction of this GABAergic mech-

anism may lead to an aberrant increase in cortical excitability,65

manifested as alterations in functional synchronisation and spurious

hyperconnectivity, predominantly in fast frequency bands, such as

beta and gamma.66,67 Furthermore, some interesting computational

work has shown how the correct function of INIs is necessary to

maintain the stability of functional networks, with patterns of

aberrant hyperconnectivity appearing after different types of

dysfunction.68

Within this framework, the hyperconnectivity profiles found in

this study could rest on abnormalities of these inhibitory mechanisms.

In this line, GABAergic dysfunction is associated with alterations in

functional synchronisation, both in animal69 and human models.70 In

an extensive review, Duncan and colleagues (2014) reported how, in

general terms, GABAergic levels in different brain regions showed a

negative relationship with functional synchronisation in several

resting-state networks. Specifically, some studies have found a nega-

tive correlation between functional synchronisation in the DMN and

GABA levels in the PCC71–74 and mPFC.75 These studies seem to sup-

port the idea of potential abnormalities in GABAergic inhibition mech-

anisms underlying the hyperconnectivity found in the fBD group. In

the same framework of current research, a previous work similarly

reported increases in beta-band FC during the execution of IC tasks,

particularly among important DMN, SN, and ECN nodes (such as ACC,

mPFC, hippocampus and lateral PFC).26 Current evidence suggests

that such electrophysiological phenotypes may not be dependent on

the current cognitive state but are likely related to a deeper neurobio-

logical hyper-excitability.

Regarding neuropsychological traits, there is additional evidence

associating dysfunctions in GABAergic neurotransmission with such

cognitive phenotypes, providing a common framework for under-

standing electrophysiological and cognitive abnormalities. In an exten-

sive review on animal and human models, Hayes and collaborators

(2014)76 depicted the association between lower GABAergic levels in

various brain structures (notably the mPFC and ACC), higher impulsiv-

ity and poorer executive control. Subsequent works in animal and

human models show how decreased GABA synthesis in the PFC77 or

impairments in the function of GABAa receptor78 represent a marker

of impaired executive control and impulsivity.79,80 Interestingly,

increased brain excitability has been associated with higher sensation-

seeking phenotypes and subsequent substance abuse,81 highlighting

the positive relationship with FC found in current work.

Based on the above, these neurobiological differences could

underlie the phenotypes of electrophysiological hyperconnectivity

and dysfunctional neuropsychological traits as vulnerability factors for

the development of risk behaviours. Figure 4 provides a schematic

theoretical model of the risk of developing BD as a function of FC and

SR capacities.

Finally, some limitations must be considered. Although the sample

size was large enough to detect differences with high effect sizes,

larger and independent samples should be used to confirm current

evidence. Additionally, SR traits should be supported with objective

neuropsychological assessments of executive performance to improve

the characterisation of neurocognitive domains and their relationship

with electrophysiological profiles. Other psychological traits such as

social anxiety and depression should be considered in future studies,

since they are an important factor in alcohol consumption, and maybe

present even before BD onset.

In conclusion, the evidence provided during this work seems to

confirm the existence of differences in SR traits and resting-state

electrophysiological networks before alcohol consumption. This evi-

dence should provide an important step forward in the identification

of those adolescents at risk of developing risky behaviours such as

BD. However, the neurobiological and psychological nature of these

abnormalities in early adolescence remains unclear. Further research

should answer the questions raised by this work by exploring in-depth

the neuromaturational substrate underlying the risk phenotypes.

Moreover, potential clinical implications arise from this new evidence.

Thanks to the identification of the most vulnerable neuropsychologi-

cal traits of at-risk adolescents, the door is open to developing cogni-

tive training programmes to strengthen and provide tools against the

development of maladaptive behaviours. Likewise, the identification

of the neurofunctional correlates of such behaviours allows for new

perspectives of intervention, such as neuromodulation. The benefits

of these tools in the modification of neurocognitive abilities are being

tested,82 being a promising path for intervention on BD behaviours.83

This growing knowledge should support the development of better

prevention and intervention programmes, geared to meet the needs

and motivations of the unique adolescent brain.
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